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A composition of two di!erent implementations of the idea of non-smooth transformation
of variables, space and time, is proposed in this note. The resulting transformation is
illustrated on the impulsively forced non-linear oscillator between two absolutely rigid
perfectly elastic barriers. It is shown that the space component of the transformation
eliminates the barriers/constraints, whereas the time component removes external d-pulses.
As a result, the manifold of periodic solutions is described by a boundary-value problem
with no space- or time-dependent d-type singular terms.

The method of non-smooth transformation of the con"guration space of moving particles
under absolutely rigid barriers/constraints condition was proposed in references [1, 2], (see
also reference [3]). On the other hand, special non-smooth/sawtooth transformation of time
can be introduced for a class of strongly non-linear vibrating systems with no barriers [4].
The temporal implementation generates algebraic structures of &&hyperbolic numbers'' and
requires some special mathematical tool [5] (see also references [6, 9] for physical
applications and details). The result of this note is based on a complementary/opposite
character of the two methods. All necessary features of their composition can be shown by
considering the forced non-linear oscillator between the two absolutely rigid barriers.

Let us suppose that the restitution coe$cient is equal to one, however the energy
dissipation is taken into account by linear damping. The related di!erential equation of
motion between the barriers is of the form

xK#2fxR #f (x, ut)"pSA(ut) (1)

and the constraints/barriers condition is

!1)x(t))1, (2)

where f, u and p are constant parameters, the function f (x, ut) is supposed to be periodic
with respect to ut, and the period is equal to four. Such normalization is convenient for
transformations below, and it is dictated by special features of the saw-tooth, piece-wise
linear sine, S (l), with the unit amplitude and the period which is equal to four providing the
unit slope, so that the regular part of the derivative (for almost all l ) gives

[S@ (l)]2"1. (3)

A unit-form analytic expression can be represented in the form S (l)"(2/n) arcsin
[sin(nl/2)].
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In equation (1) and below, overdot means time derivative, whereas prime denotes
di!erentiation with respect to whole argument shown with the related function. For
example, second order generalized derivative on the right-hand side of equation (1) is

SA (ut)"2
=
+

k/~=

[d (ut#1!4k)!d (ut!1!4k)]. (4)

By the idea of non-smooth transformation of space, constraints (2) are eliminated by the
change of the co-ordinate x (t)Pl (t), such that

x"S(l). (5)

When substituting transformation (5) into equation (1), one faces the singular term, SA (l)
(dl/dt)2. Following references [1, 2], this term should be simply omitted together with the
constraints, since this is the only term that can be caused by the rigid barriers.s Then,
multiplying the equation by S@ (l) and taking into account equation (3), the "nal result of the
transformation is represented in the form

d2l

dt2
#2f

dl

dt
#S@(l) f [S (l), ut]"pSA (ut)S@ (l ), (6)

where l (t)3 (!R, R), is the new-co-ordinate of the moving particle.
Starting next step, note that the sawtooth time transformation can be directly applied to

the class of periodic motions only, unless some special modi"cation has been done. Thus,
the regimes, l (t), are assumed to be periodic of the same period, as the external force. The
sawtooth oscillating time, q, is introduced as [5]

q"S (ut), e"S@(ut) and l"X (q)#>(q)e. (7)

Substituting equation (7) into equation (6), one obtains

u2XA(q)#2uf>@(q)#R(X, >, q)

#[u2>A(q)#2ufX@(q)#I(X, >, q)]e (8)

"[pR
S
(X, > )#pI

S
(X, >)e!u2X@(q)]SA(ut).

G
R

I H"
1

2
MS@(X#>) f [S (X#>), q]$S@(X!>) f [S(X!>), 2!q]N,

G
R

S
I
S
H"

1

2
MS@(X#>)$S@ (X!>)N,

under the necessary condition of continuity for l(t),

> ($1)"0. (9)
sOriginally, some &&impact terms'' depending on the co-ordinate and velocity were placed on the right-hand side of
the equation of motion instead of the constraints conditions. These terms are thought to be of the same structure as
those produced by the di!erentiation of S (l(t)).
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In equation (8), R and I components can be veri"ed by direct substitution of explicit
expressions for di!erent pieces of the functions q and e over the whole of their period [5].

The periodic singular term on the right-hand side is removed by the additional boundary
condition

CX@(q)!
p

u2
S@(X)DKq/$1

"0 (10)

since the d-impulses (4) are located at those time instances, where S (ut)"$1. In the same
way, condition (9) was obtained, when taking "rst derivative of representation (7).

After the singular term has been eliminated, the two components of expression (8) must be
separately set to zero. As a result, one obtains the di!erential equations

u2XA(q)#2uf>@(q)#R (X, >, q)"0, u2>A(q)#2ufX@(q)#I (X, >, q)"0 (11)

in addition to the boundary conditions (9) and (10).
After solution of the boundary value problem (9)}(11) has been obtained, the solution of

the original system (1) and (2) is given by composition of the two transformations (5) and (7)
as follows:

x (t)"S (X(S (ut))#>(S (ut))S@ (ut)). (12)

In many particular cases, the above boundary-value problem can be simpli"ed. Let us
consider the example

xK#u2
0
x"pSA (ut), !1)x (t))1. (13)

In this case, the temporal transformation with zero >-component can be applied:

x"S (X(q)), q"S (ut). (14)

The "rst two derivatives of expression (14) are found as

xR "S@ (X)X@(q)S@ (ut)u,

xK"SA(X)[X@ (q)]2u2#S@(X)XA(q)u2#S@ (X)X@(q)SA(ut)u2, (15)

where the relation [S@(ut)]2"1 has been taken into account.
It is seen that the acceleration xK includes both space- and time-dependent singular terms

associated with second derivatives SA (X) and SA (ut). The "rst singular term is due to
non-smooth transformation of space and must be removed together with the constraints
condition in equation (13) according to basic idea of the non-smooth transformation of
space. The last term is caused by the non-smooth transformation of time and is going to
compensate the external impulses on the right-hand side of equation (13). The latter is
provided by condition (10). The rest of the equation is multiplied by S@ (X), and gives

XA (q)#A
u

0
u B

2
S@(X)S (X)"0. (16)

Since the resulting boundary value problem, equations (10) and (16), does not include
d-type of singularities any more, the related standard numerical codes can be implemented.
Figure 1 shows typical pair periodic solutions, obtained for parameters j"(u

0
/u)2"7)5



Figure 1. Typical temporal mode shapes of a now couple of periodic solutions corresponding to di!erent initial
slopes, (a) X@(0)"7)24119 and (b) X@ (0)"7)63019. The system parameters are j"7)5 and P"1)0.
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and P"p/u2
0
"1)0, where the circular frequency of the oscillator was taken as u

0
"2n.

(Note that the symmetric case, X(!q)"!X(q), is considered only.) These solutions
correspond to di!erent initial slopes, (a) X@(0)"7)24119 and (b) X@(0)"7)63019. Under the
above parameters, the number of periodic solution is 9. The number of periodic solutions is
growing, when the parameters j and/or P are increased. New pairs of solutions, as shown in
Figure 1, will appear step by step. The small deviation of the initial slopes in (a) and (b)
indicates that the related solutions, in Figure 1, just appeared. In this connection, we note
work [7], were a complex sequence of transitions due to discontinuities was found in
a harmonically forced oscillator under a &&perfectly plastic'' constraint.

To this end, it must be noted that the above composition of two transformations employs
their di!erent physical and also mathematical meaning, and became possible due to the
complementary character of them. Note that in cases of spatially periodic structures, the
temporal argument can be re-denoted in such a manner that it plays the role of the spacial
co-ordinate of the continuous structure (see for example reference [8]). This idea, however,
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does not mix the methods, which are distinguished by their &&mathematical targets'', at least.
Namely, the "rst method deals with a function/image, whereas another one transforms an
argument/pre-image.
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